Flexibility of new and optimized fossil fired Power Plants

Seminar on Adaption of Thermal Power Plants to Fluctuating Renewable Energies Hyatt Regency, New Delhi, 16.12.2016

Axel Meschgbiz RWE Technology International

Major Efficiency and Flexibility Measures

- Fuel change, Blending, Fuel handling
- Optimisation/adaption of the combustion
- > Technical optimisation, modification operation regime
- Choosing new material
- Optimisation of the turbine
- Optimisation of Flue gas cleaning system
- Optimisation of instrumentation and control system
- R&D activities regarding efficiency increase and flexibility

Technology retrospect

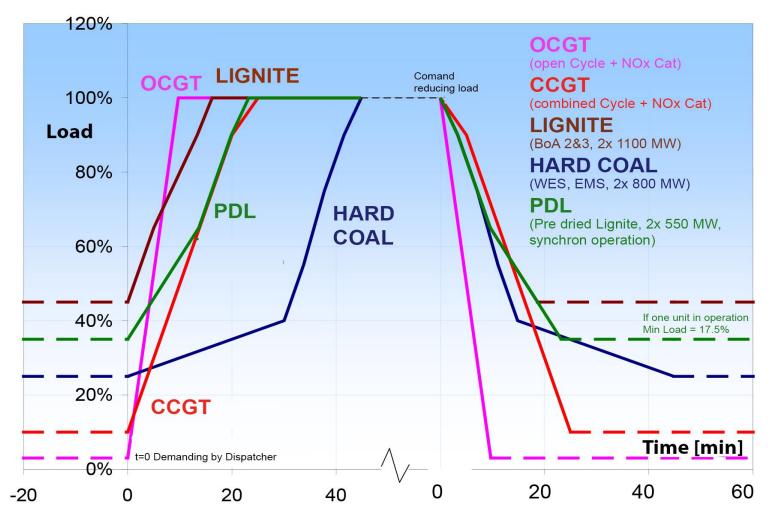
RWE made in the last decade a lot of effort to increase the availability, flexibility and efficiency of the PF Boilers – Example Lignite:

	150 MW- Blöcke	300 MW - Blöcke	600 MW - Blöcke	1000 MW - BoA - Block	Next Project: 2x 550 MW Pre-dried lignite CFBC Units
IBN:	1963	1965 - 1971	1974	2003	
η :	31%	32-34%	35-36%	> 43%	
Kohle:	1,2 kg/kWh	1,1 kg/kWh	1,1 kg/kWh	0,9 kg/kWh	

What does Flexibility mean?

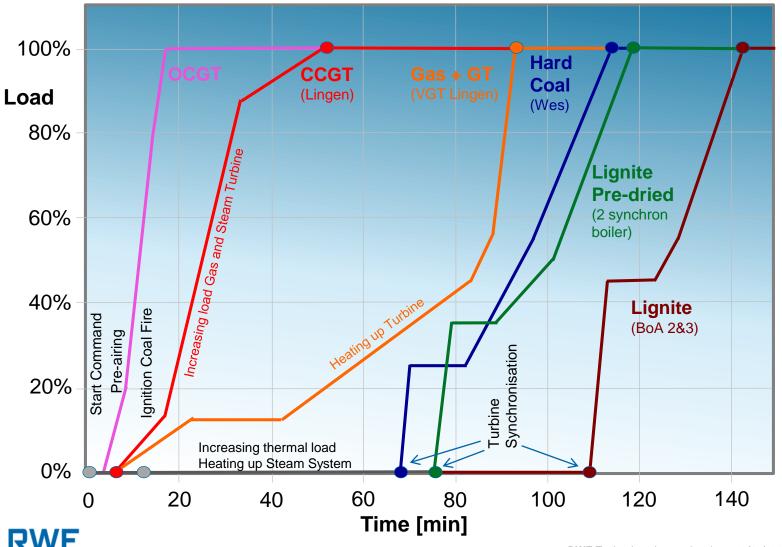
High flexibility can be described as follow:

Dynamic


- > high operational gradient (load change speeds)
- > short start-up minimum and nominal load
- > short minimum downtime

Operational

- > high starting number and load cycles at reduced Lifetime consumption
- > lowest possible minimum load at high efficiency
- > uniform, high efficiency curve across the load



Load Change Rate between minimum and nominal load

Load Change Rate - Cold Start

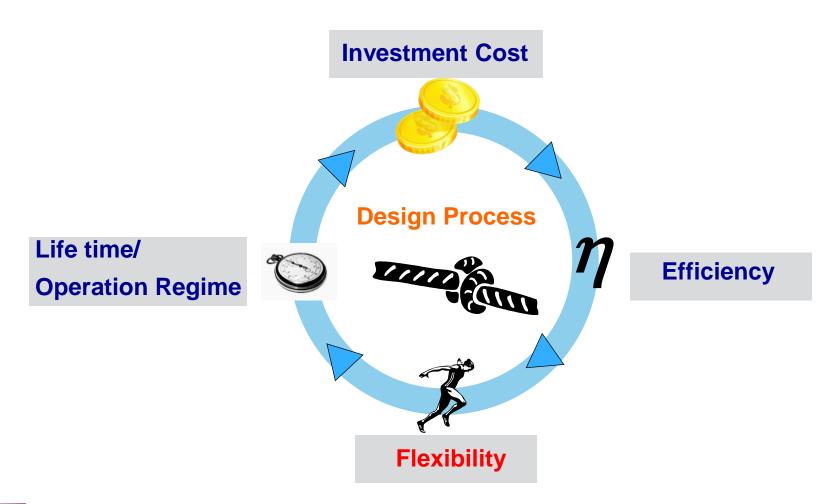
Short Minimum Downtime

	With <u>high</u> Life Time reduction	With <u>low</u> Life Time reduction
CCGT	< 30 min run out of the GT is the time leader	
Hard Coal	min. 30 min	< 240 min
Lignite	min. 30 min	< 240 min
Pre-dried Lignite	min. 30 min	< 240 min

- > After command " fire off " measures must be carried out to bring the unit back into the " Ready " operating state. Hereby, the condition of the unit must be considered.
- > Time leader in coal firing is the pre-ventilation due to security.
- > Gentle cooling of the steam generator before air purging, which increases the life time but it is time-consuming. This measure avoids the temperature stresses.
- > Lifetime consumption is considered in the design of our plants.

Current Design

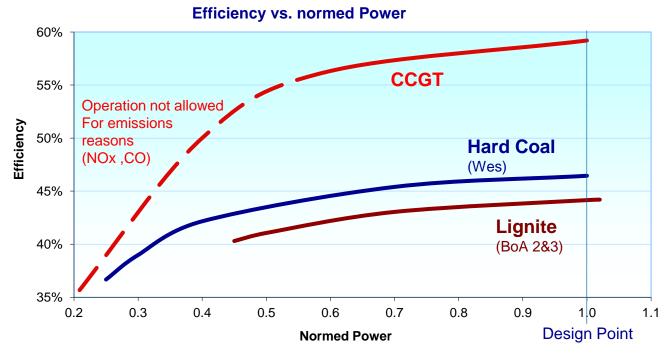
Design Specifications new Power Plants Example: Power Plant Westfalen


Operational Characteristics (Hard Coal, 800 MW)

- > Base and medium load
- > Plant runs through in times of low demand
- > Minimum load 25 30%, 7,500 operation hours per year

Operation Mode		Per year	40 years
	Cold Starts	6	240
	Warm Starts	42	1,680
	Hot Starts	84	3,360
	Load Cycles	1,200	48,000

Future design priorities


The prioritization is based on the value of flexibility !

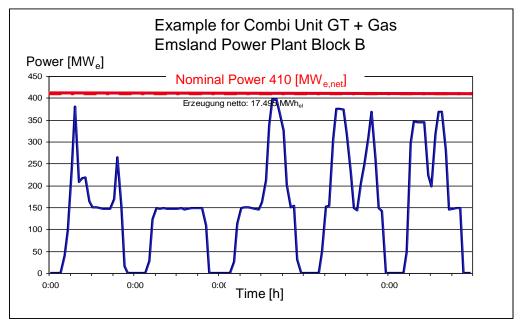
Efficiency of units at Part Load

The Plant is designed for the rated nominal operation point (optimum efficiency)

- > Efficiency drop occurs in part load operation for all plants
- > Operating efficiency decreases with frequent part load trips

Determined Potentials to increase the Flexibility

Plant	CCGT	Coal fired	
Operating gradient	Potential \pm 7 %	Potential \pm 6 %	
Measures	 Wall thickness reduction Once through steam generator 	 Separation of milling and combustion process Wall thickness reduction Matched components design 	
Minimum Load	Potential approx. 0% load	Potential approx. 20% load	
Measures	 NOx- Catalysator Post-combustion of CO 	 Increasing the number of mills Improving the milling process 	


Flexibility improvement by Optimizing the Power Plant Portfolio - Example Combi Unit (Gas + GT)

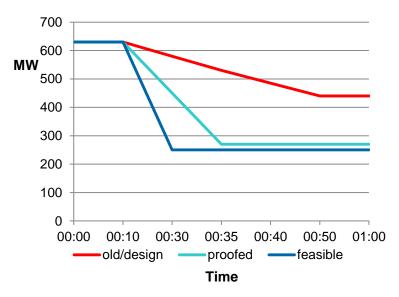
Existing Unit

- > Only steam turbine Controlled (GT drives at nominal load, 55 MW)
- > From > 150 MW operating gradient about 40 MW / min.
- > Full flexibility of the Plant is not accessed today from the dispatcher, although the plant is in the secondary control mode

Modernisation

Replacement of the
 V93 turbines by 2 Trent
 aero derivative turbines
 allows higher gradient

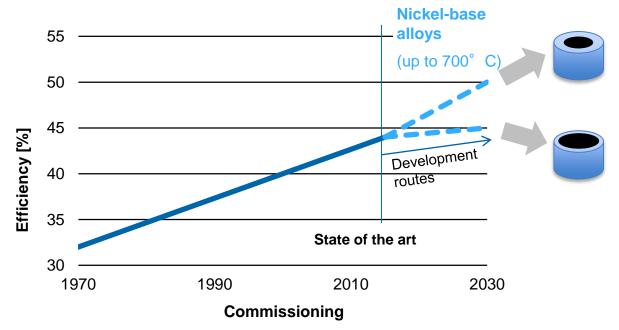
I&C Optimisation makes modern Power Plants even faster


Lingen CCGT (875 MW)

> Increase in start-up gradient 4 MW/min → 12 MW/min

Neurath lignite-fired plant (600 MW)

- > Reduction in minimum load of 20%-points
- > Increase in load change rate 5 MW/min → 15 MW/min



New advanced Materials allow Increase in Flexibility or Efficiency

Efficiency development of lignite-fired plants

High efficiency

 Increase in steam parameters for newbuild power plants (700° C power plant)

High flexibility

 Constant steam parameters in existing plants and newbuilds (600° C live steam temperature)

Use of nickel-base alloys depends on operating conditions of future power plants

R&D Activities related to Flexibility Increase

- > New materials for thin-walled flexible components
- > New measurement methods and IT based monitoring to assess the life consumption to avoid damage of highly stressed components
- > Predictive Maintenance: monitoring of components using Big Data
- > Temporary electricity storage, when the produced electricity from conventional power plants is not required
- > New combustion systems for lignite based dry lignite in order to increase the flexibility

THANK YOU VERY MUCH FOR YOUR ATTENTION

